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1. INTRODUCTION

Let K be a closed set in the real N-dimensional Euclidean space E,. To
formulate the moment problem for K the following notation is convenient. A
generic point in E, is an N-tuple & = (&, ,..., &) of real numbers, and a multi-
index « is an N-tuple a = (a,...., @y) of non-negative integers. The monomial
function &% is defined by

=g

If for every multi-index a there is given a real number A(a) then the multi-
indexed sequence {A(a)} is called a candidate moment sequence. In the K-
moment problem it is required to find necessary and sufficient conditions,
expressed in terms of the numbers A(a), in order that the candidate moment
sequence {A(a)} have a representation

Ma)= | & du. (1)

where u is a non-negative Borel measure with support contained in K. If
there is such a measure u then {A(a)} is called a K-moment sequence and p is
called a solution of the K-moment problem.

For N=1 the moment problem has been studied intensively and an
elaborate theory has been developed. For an account of the methods and
results of this theory, and its history see |[1,4,7]. For N > 1 the known
theory of the moment problem is comparatively meager. Hildebrandt and
Schoenberg [3] have necessary and sufficient conditions for solvability in the
case when K is an N-dimensional cube, and Stancu |8] for the case of an N-
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dimensional simplex. Results for other specific sets K in £, N > 1, appear
to be unknown. However, for N > | there are some general results known
concerning the uniqueness of the solution of the moment problem. and for
K = E, sufficient criteria for solvability are known provided the moments
satisfy a growth condition which guarantees uniqueness of the solution |2].

The objective here is to provide necessary and sufficient criteria for
solvability of the moment problem for the cases in which K is one of the
following: a (solid) sphere or its boundary: a polysphere (e.g., polydisc) or
its distinguished boundary: a torus; a cylinder or certain parts thereof.

2. NOTATION

Real or complex valued functions defined on £, will be denoted by lower-
case Latin letters. If f is a function its value at a point &= (&,..... &} in E|
will be denoted by f(&) or f(¢,,.... &,). The adjoint function f* is defined by

where the bar signifies complex conjugation. A function f is real if and only
if f=f*. The coordinate functions x;, j = l...., N, are defined by

O =6,
They are real and for any function f

S=S(x e X

where the right side is interpreted as a composite function. The radial
function r is defined by

Fe= (Xt ma)t
If @ =(a,....ay) is a multi-index, its order is |a|=u, + --- + a, and the
corresponding monomial

xt=xt e xW

is of degree l«|l. If a=(a;...,ay) and f=(f,...0y) then
atf=(a,+f v aytfy)

The set of all polynomials in the N variables &; with complex coefficients
will be denoted by .7°. With the usual rules for algebraic operations . 7° is a
commutative complex algebra with involution p— p*, and the constant
function 1 is an identity element for . #".
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3. MOMENT FUNCTIONALS

Corresponding to any multi-sequence {A(a)} of real or complex numbers
there is a linear function L defined on .#* as follows. If

p=> n(a)x"

(43

is the representation of a polynomial p as a finite linear combination of
monomials then

L(p)=> nla)Ala).

Conversely, if L is a given linear functional on .7, it is obtained in this way
from the multi-sequence {i(a)}, where

Ma)= L(x*).

The linear functional L on .7 is called a K-moment functional if it has a
representation

L(p)={ pdu (2)
K

where u is a non-negative Borel measure in K. Evidently L is a K-moment
functional if and only if the corresponding multi-sequence {A(a)} is a K-
moment sequence.

Solvability criteria for the K-moment problem can often be most
conveniently summarized as conditions to be satisfied by the linear
functional L. Such conditions are regarded as effective solvability criteria if
they are readily converted into equivalent conditions on the multi-sequence
{A(«)}. For example, the condition

(i) L{pp*) >0 for every p€&.7,

is obviously a necessary condition for the existence of a representation (2).
The equivalent condition on the sequence {A(a)} is obtained as follows. If

p=> n(a)x*

a

is a polynomial, then

pp* =N\ n(a) n(f) x°
a B
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and

Lipp*) =N\ n(a) n(B) A + B). (3)
a B

The right member of (3) is a Hermitian form in the variables z(«)., and
condition (i) is the assertion that this form be positive semi-definite. This will
be the case if and only if every principal minor of the matrix of the
Hermitian form is non-negative. Thus condition (i) is equivalent to the con-
dition

(i) for every finite sequence «'". ¢'*..... a"™ of distinct multi-indices
det A(a'” + «'®) 2 0.

Condition (i) or equivalently (i) is the classical necessary and sufficient
condition for solvability of the moment problem in K = F,.

A set B in E, is called an algebraic set if there is a non-zero polynomial g
which vanishes everywhere on B. In E | the algebraic sets are the finite sets.
in E, they are the algebraic curves or subsets thereof.

Every E,-moment functional L satisfies condition (i), and this condition is
part of the criteria in some of the theorems below. In order that the
representing measure u of L be not supported by any algebraic set it is clear
from (2) that it is necessary and sufficient that (i) be satisfied with strict
inequality for every non-zero p € . 7.

4. STATEMENT OF MAIN RESULTS

Let S be the unit sphere and X the surface:

S=1&r(E) < L (4)
=& E) =11 {5)

THEOREM 1. [In order that a linear functional L on .7 be an S-moment
JSunctional it is necessary and sufficient that L satisfy the conditions (i)
L{(pp*) >0 for every p € .7, and (ii) L((1 —¥*) pp*) > 0 for every p € 7.

Criteria for solvability of the X-moment problem can be deduced from
Theorem I in various forms. When N=2. X is a circle and the
corresponding moment problem has been intensively studied as the
trigonometric moment problem. It therefore seems most natural to formulate
the X-moment problem as a harmonic moment problem.

A not necessarily homogeneous polynomial A in .7 is called a harmonic
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polynomial if it satisfies the Laplace equation in E,. It is well known that
for every polynomial p there is a unique harmonic polynomial # such that

p=h+(1—ri)g ge .7,

The values of p and 4 on the boundary X' of § are the same, and % is the
unique solution of the Laplace equation in S with these boundary values.

A complex valued function / defined on X is called a spherical harmonic
if there is a harmonic polynomial 4 in .# such that A=% on £. Under
algebraic operations defined pointwise on X, the collection of all spherical
harmonics forms a complex commutative algebra .# with an involution
h - h* and an identity, the constant function 1. The product of two elements
h,. h, of .# will be denoted by h, ® h,. To see that this pointwise product is
indeed a spherical harmonic, reason as follows. Let 4, and 4, be the
extensions of i, and A, to harmonic polynomials and form the polynomial
k=h h,. Then k agrees with 2, ® h, on Z, and there is a unique harmonic
polynomial &, such that k =k, + (1 — r*)g, ¢ € .7*. The polynomial 4, is a
harmonic extension of 4, ® k,, which latter is therefore a spherical har-
monic.

Another equivalent view of the algebra .# of spherical harmonics is the
following. The harmonic polynomials form a complete system of represen-
tatives for the cosets in .7 of the principal ideal generated by 1 — r%, and so
the space of harmonic polynomials is naturally endowed with the algebraic
operations of the quotient algebra .7*/(1 — r*). This algebra is isomorphic to
the algebra .#, the isomorphism mediated by restriction of functions to X.

A subset B of X is called harmonically algebraic if there is a non-zero
spherical harmonic which vanishes at every point of B. A linear functional
M on the algebra .# of spherical harmonics is called a harmonic moment
Junctional if there is a non-negative Borel measure 4 on X such that

M(h) = |  hdu  forevery he #. (6)

THEOREM 2. In order that a linear functional M on .# be a harmonic
moment functional it is necessary and sufficient that

(iii) MR ® R >0 for every heE.#.

and in order that in addition the representing measure u be not supported by
any harmonically algebraic set, it is necessary and sufficient that strict
inequality hold in (iii) for every non-zero h € .#.

Theorem 2 is trivial for N =1, and for N =2 coincides with the well
known solvability criteria for the trigonometric moment problem.
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Conventionally, a polydisc is a direct profuct of finitely many discs. For
example, the subset of £, defined by

S N N R
is a bi-disc. The subset of £,, defined by
=G+ Gt F O LG S (7)

is a bi-sphere. For N =1 the bi-sphere is a square, for ¥ =2 it is a bi-disc.
The two following theorems are stated for the bi-sphere, but both the
methods of proof and the statements extend in an utterly straightforward way
to direct product of finitely many spheres not necessarily all of the same
dimension.

The first N coordinate functions for E,, will be denoted by x;, j = L., N,
and the last N by ;. j= 1....N. Thus

\/(é) = é,‘- _1',‘(6) = éw i J= | A

The two partial radial functions s and ¢ are defined by

1.2

s=(xi+ - +xy)" r=(yi+ - +yv)

12

so that s* 4+ " =r% The general monomial is of the form x®yv’. where
a = (d.....ay) and f=(f,..... §,) are multi-indices for E,.. The algebra of all
polynomials in the 2 variables will be denoted by . »**.

The Bergman-Silov boundary, or distinguished boundary, of S* is the set

L= &S =LA =1 (8)

Any monomial x°p® is equal on £’ to a product

where # and & are harmonic polynomials. A function / defined on X7 is
called a double spherical harmonic if it is equal on XZ? to a sum of products
of harmonic polynomials in x,...., xy and harmonic polynomials in y,,.... .
Every p € .7 is equal on Z*? to a unique double spherical harmonic. Under
pointwise algebraic operations the set of all double spherical harmonics
forms a commutative algebra . # with an involution and an identity element.
The product of two elements f, § of . #° will be written % §.

A linear functional M on .#7? is called a double harmonic moment
functional if there is a non-negative Borel measure # on 27 such that

L(f)= ’ ‘f”dy for every fe€.#%

-3
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A subset B of X7 is called a double harmonically algebraic set if there is a
non-zero double harmonic polynomial which vanishes everywhere on B.

THEOREM 3. In order that a linear functional L on .7** be an S*-moment
Sfunctional it is necessary and sufficient that

() L(pp*)>0 forall pe. .7
and
. L((1 =) pp*) >0
(iv) -
L{(1—1)pp*)>0 for all pe.7-

THEOREM 4. [In order that a linear functional M on the algebra #° be a
double harmonic moment functional, it is necessary and sufficient that

(v) M(f®f*)Y=>0  forevery fE.#7

and in order that in addition the representing measure u be not supported by
any double harmonically algebraic set, it is necessary and sufficient that
strict inequality hold in (v) for every non-zero f €. #7.

When N =1, Theorem 3 is a version of a theorem of Hildebrandt and
Schoenberg quoted in the following section, and Theorem 4 is trivial. When
N = 2. Theorem 4 is concerned with double trigonometric polynomials

f: \° ‘\_‘- 5(](‘ m) eikﬁei[(.).

-n L. —-m

If, in E,, the disc with center (1 — 7,0, 0) and radius 7, where 0 < r < 1/2,
be rotated about the x;-axis, the domain swept out is a (solid) torus T
defined in terms of the polynomial

L=l =) (= xH = (P + 1= 2t) (9)
by the inequality
T'={& /() 201 (10)

When 7 =34 the surface of T has a singularity which is harmless here.

THEOREM 5. [n order that a linear functional L on 7, (N=13), be a T-
moment functional it is necessesary and sufficient that

(1) L(pp*)>0 Jor every p€E .7,
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and
{vi) L(f, pp*) >0 Jor every peE .7,
In E, . with the partial radius
Fo=(x7+ o+ xn)t’

a spherical cylinder Z is defined by

Z={&rd) < li—o <&y, <o (11)
and its positive half Z* by

Z = |GEEZ0KE, . <ol (12)

In this context .#* is the algebra of all polynomials in the N + 1 variables.

THEOREM 6. [n order that a linear functional L on .#° be a Z-moment
Sfunctional it is necessary and sufficient that

(1) L(pp*) >0 Jor every pe .7,
and
(vii) L((1—ri)pp*) >0  for every p€E .7

THEOREM 7. [n order that a linear functional L on .7* be a Z -moment
Sunctional it is necessary and sufficient that (i) and (vii) of Theorem 6 hold
and

(viil) L(xy,,pp*) 20 Jor every pe€ .7

5. THEOREM OF HILDEBRANDT AND SCHOENBERG

In [3], Hildebrandt and Schoenberg gave a solvability criterion for the
moment problem in a cube. They stated their result for the unit cube in the
positive orthant. By a translation of axes and change of scale an equivalent
result is obtained for the cube

C=1{&—1<EK L j= 1, NJ. (13)
If @ and # are multi-indices then (I — x)® (1 + x)? is a hort notation for

(1 =) (4 x)% = (1 =) (1= x)™ (14 x)%0 o (14 x> (14)
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Their result is the following.

THEOREM A. [In order that a linear functional L on .7 be a C-moment
JSunctional it is necessary and sufficient that for every pair of multi-indices a.

[
L1 —x)* (1 + x*) > 0. (15)

The following theorem |7, p. 11| can be obtained as an easy deduction
from the Weierstrass polynomial approximation theorem,

THEOREM B. [f an E,-moment problem has a solution with compact
support, then it has only one solution.

6. PROOFS

ProrosIiTION 1. [f L is an E,-moment functional with a representing
measure u with compact support K, and [ is a polynomial such that
L(fpp*) > 0 for every p € .7, then K is contained in the closed set

F={c.f(¢) >0}

Proof. Let B be a compact subset of the complement of F. By the
Weierstrass polynomial approximation theorem there is a real polynomial p
such that p > 1 on B and |p| <3 on KM F. For any integer n >0

OSLUPM = fodut|  fp™"du
KW TEx-F

The first integral -0 as n — oo, the second has a non-positive integrand and

| < S
F ‘B

TEn—

which is <0 if u4(B)+ 0. This would be a contradiction so #(B)=0 and
KCF.

Proof of Theorem 1
The identities
L—x,=3[(0—x)+x3+ - +xi|+ (1 ~—r)) 4, (16)
L+x,=3[(1+x)+x3+ - +x2]+ (1 —r) (17)
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show that [ —x, and |+ x, belong to the set Q of all polynomials ¢
representable in the form

g=a+ (1 -—r’b,

where a and b are finite sums of squares of real polynomials. Similar iden-
tities obtained by permuting the x; in (16) and (17) show that each of the
linear functions 1 + x; is in Q. If

q:a+(1*r)2b~ Q|:al+(1‘rl)bl
are in () then

qq, = laa, + (1 —r*y bb,| + (1 —r*)|ab, + a,b]

is also in Q. Hence for any multi-indices «. § the product (I — x)* (1 + x)*
{see (15)) is also in Q.

Now suppose L satisfies conditions (i) and (ii). Then if ¢ and b are finite
sums of square of real polynomials,

L(a

9

) by (i)
L((1 —r*)b)

>0
20 by (i)

so L(g) >0 for every g€ Q. Hence. since (I —x)* (1l +x)’is in Q. L
satisfies condition (15) of Theorem A. It follows that L is a C-moment
functional.

Now choose any unit vector v'"' = (»{"'.....+{"") in E,. The linear function

L= (M &) =1 — (0 + -+ vVEy)

defines a supporting half-space

H')y={& 1= (" ¢) > 0}

for the unit sphere S, and all supporting half spaces are of this form. Choose
additional unit vectors v'?,...v"Y which together with v form an
orthonormal basis in E,. The identity

— (G =4 = (L ET P A MOV (L =) g
(18)

shows that 1 — (v, &) = f(£) is in @, hence by (i) and (ii)

L{fpp*) >0 for every pin .7
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It then follows from Proposition 1 that the support of the representing
measure ¢ of the C-moment functional L is contained in the half space
H(v'"). Each unit vector v defines a haif space H(v) which contains the
support of 4. The intersection of all such half spaces is the unit sphere S so
L is an S-moment functional and the proof is complete.

An alternative method for proving Theorem 1 is the operator theoretic
method used in the proof of Theorem 6 below, with substantial
simplifications because only bounded operators occur in the proof of
Theorem 1. Alternatively Theorem 8.5 of [6] can be used.

Proof of Theorem 2

First, observe that the mapping 7T which sends a polynomial p into its
restriction to X, denoted by j, is an algebraic homomorphism of .7 onto . #.
For each p € .7 there is a unique harmonic polynomial & which is equal to p
on Z. Hence p =& which is indeed a spherical harmonic. and clearly every
spherical harmonic is in the range of 7. Hence T maps .7 onto .#. The map
is an algebraic homomorphism, that is 7 is linear, multiplicative T(pg)=
(Tp) ® Tgq, and respects the involution T(p*) = (Tp)*.

Now given a linear functional M on .# which satisfies (iii), there is a
linear functicnal L defined on .7° by

L(p)= M(Tp).
For any pc .7
L{pp*)=M(T(pp*)) = M(T(p) ® (Tp)*)

so L(pp*)>0 by (iii), i.e., L satisfies (i). Also for any p& .7 since
T(1—rH =0,

L((1 =) pp*)=M(T(1 —r") T(pp*)) =0.
Hence L satisfies (ii) and also the reversed inequality
(i)’ L((1—r*) pp*)<0 for every p€ .7.

Because L satisfies (i) and (ii), L is an S-moment functional by Theorem 1.
Because of (i)’ the support of the representing measure u is, by
Proposition 1, contained in the set where 1 — r* < 0. The intersection of this
set with S is X, so the representing measure u is supported on X.

The range of T is .# so for each 7 €. # there is a p €.7 such that
Tp = h, and for any such p, p=h on X. Thus

M(R)=M(Tp)=L(p)=| pdu=| hdu.
“x vk

640:30/4 6
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Thus M is a Z-moment functional. The additional clause in Theorem 2
concerning strict inequality in (iii) is evident.

Proof of Theorem 3

Let L satisfy conditions (i) and (iv) of Theorem 4. When both sides of the
identity

2o =(1—s) (1 -1 (19)
are multiplied by pp*. p € 7. it is found from (iv) that L satisfies
L((2—r)pp*) 20 for every p€.7. (20)

By considering the effect on the conditions of Theorem 1 of a change of scale
in Ey, it can be seen from (i) and (19) that L is an S(,/2)-moment
functional where S(,/2) is the sphere with center at the origin and radius
V2. Since L also satisfies condition (iv), it follows from Proposition 1 that
the representing measure u for L has its support contained in the bi-sphere
S% so L is an S*moment functional.

Proof of Theorem 4

Theorem 4 can be deduced from Theorem 3 in a way very similar to the
way in which Theorem 2 was deduced from Theorem . The details are
omitted.

Proof of Theorem 5
Let L satisfy conditions (i) and (vi). From the identity

4r(l — )1 —r) = (1 = Y + 4(1 — )" X3 + [y,
it follows that for every polynomial p
4r(1 — 1) L((1 — r*) pp*)
= L((1 = r")? pp*) + 4(1 — 1)’ L(x3 pp*) + L(f7 pp*).

The first two terms on the right side are >0 by (i), the third is >0 by (vi),
and since 0 <47(l —7) because 0 <13, it follows that L satisfies
condition (ii) of Theorem 1, so L is an S-moment functional. Then because
of (vi), Proposition 1 ensures that the representing measure u has support
contained in SN T=T. Thus L is a T-moment functional.

Theorems 2, 3, 4, 5 have been obtained as simple deductions from
Theorem 1. Many additional results of a similar nature can be obtained by
similar arguments, for example, solvability criteria for hemispheres, spherical
sectors, etc.. and by changes of scale and other affine transformations in E ..
for ellipsoids and parts thereof.
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The objective now is to prepare for the proof of Theorems 6 and 7. For the
remainder of the discussion it is assumed that .#° is the algebra of all
polynomials on E,, |, and that L satisfies (i).

PrROPOSITION 2. Let L be a linear functional on .9° which satisfies (i)
L(pp*) >0 for all p € .7°. Then L(pg*) is a semi-definite Hermitian form on
7, Le. L(pg*) is linear in p, L(pp*) >0 and

L(gp*)= L(pg*).

Proof. The last equality is obtained as follows. When p and g are
interchanged in the polarization identity

AL(pg*)=L((p+ @)(p+ @)*) —L((p —q)(p — 9)%)
+ilL((p +ig)(p +ig)*) — L((p —ig)(p — ig)")|
the real part on the right is unchanged, the imaginary part changes sign.
The following deductions from the fact that L(pg*) is a semi-definite

Hermitian form are well known (see |6, Chap. 8]). The form satisfies the
Schwarz inequality

[L(pg*)| < L"*(pp*) L"*(qq™)

and from this it is seen that the set
Z ={q: L(qq*) = 0}
={g; L{pg*)=0 for all p€ .7}
is a self adjoint ideal in .7°. The quotient algebra .7°/.Z is a complex algebra

with an identity element 1+ .2 and an involution p + Z — p* + .Z. The
formula

(pr+ 2, py+2)=L(p, pY)
defines an inner product in .7°/Z with corresponding norm
Ip+ 2l =L"*(pp*). (21)

The completion of .7°/.Z relative to this norm is a Hilbert space .#
containing .7°/.Z as a dense subspace. Elements of -# will be denoted by
a, b, c,... sometimes with subscripts.

The involution of .#°/.Z is a conjugate-linear map of .#°/.# onto itself,
isometric in the norm of ~#°, so has a unique continuous extension to a
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continuous map J of # onto.#". The extended map J is a conjugation of .#,
that is. J is conjugate linear, J° =7, and for all a, b in .#

(Ja,Jb) = (h. a).

For I < & < N+ I, multiplicationn by x, + Z in the algebra .»°/.Z can be
viewed as a linear map X, of # with domain .7°/.Z. Te operators X, are
commuting symmetric operators which map their common dense domain
into itself, and they commute with the conjugation J,

X J=JX,. 1<k<N+L

Prorosition 3. [f L satisfies conditions (1) and (vii) then the operators
X, k= 1...N. have unique extensions 1o bounded self adjoint operators A,
which commute with each other, with J. and satisfy

N
N (diaca)<la.a)  forall a€ ¥ (22)
ko1
Let 7 denote the C*-algebra generated by the identity and 4,...., A ., and let
S denote the closure of X, .. Then is commutative, and every T in &
satisfies JT = T*J. Moreover SJ =JS and every T in .« commutes with S.
that is, ST 2 TS.

Proof. For any p € .7 the identity

N N
N X p+ 2= N L(xi pp*) = L(r3 pp*) (23)
1

k-1 K=

and the inequality resulting from (vii)
L(rypp*) < L(pp*) =|p +Z|° (24)

show that each X,, k= 1,.... N, is bounded. so has a unique extension to an
everywhere defined bounded operator 4,. That the A, are self adjoint and
commute with each other and with J follows by continuity from the
symmetry and the corresponding commuting properties of the X,. The
inequality (22) follows by continuity from (23) and (24).

If /is a polynomial in N variables with complex coefficients, there is a
corresponding operator polynomial f(4,....4,) which will be denoted by
f(A). Every element of .« is the limit in the uniform operator topology, of a
sequence of operator polynomials.

Let T& .« and f,(4) be operator polynomials such that f,(4) - 7. Then
for any p& .7

Sl )P +.2) = T(p + -2),
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and 7
X’\'+ lfm(A)(p + j) - x,\'+ lfm(xl CRLRL] x}\') 14 + -Z

=[xy Pt 2
= fA) S(p + 2)
->TS(p+ 2)
which shows that T(p + .Z) € 2 (S) and
STI(p+2)=TS(p + 2).
Now suppose a € &(S). Then there is a sequence p, € .7 such that
p,+ Z—a, S(p, + 2)— Sa.
Since T is bounded and 7(p, + Z)€ ' (S). I(p, + #)— Ta and
ST(p,+ 2)=TS(p,+ 2Z)—TSa.

Hence Ta € &/ (S) and STa = TSa. thus ST 2 TS.
With the same sequence p,,.

pr+Z2=J(p,+ )= Ja.
SHp,+ 2)=xy.,pf +2=JS(p, +2)>JSa

soJa € Z(S) and SJa = JSa. Since J* = it is clear that S/=JS. Q.E.D.

PropoSITION 4. Let # be a Hilbert space with a conjugation J and let
./ be a C* algebra acting on #. containing the identity and such that
JT = T*] for T &€ /. A densely defined symmetric operator S will be said to
have the commutation properties if

JS =84 and ST2>TS for Te.«. (25)

1. Any densely defined closed symmetric operator S with the
commutation properties has a self adjoint extension with the commutation
properties.

II.  If also S is positive, i.e., (Sa,a)>0 for a€ & (S) then S has a
positive definite self adjoint extension with the commutation properties.

Remark. Phillips |9, footnote p. 382| has given an example of a densely
defined symmetric operator with equal deficiency indices commuting
elementwise with a one parameter unitary group but lacking any self adjoint

extension so commuting. This example has no counterpart of the conjugation
J.

640204 7
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Progf. The proof uses the theory of Cayley transforms and the
Friedrichs extension, both found in |5, Chap. 8]. If § is self adjoint the two
conclusions are true. Assume S is not self adjoint.

The Cayley transform V' of S is the closed linear isometric operator
V=(S~ IS+ i) " with domain and range the closed proper subspaces

(Y= #(S+ ik FV)=.£(§ — ).

Since J maps /(S) onto itself it is easily seen that J maps (V) and . #(})
each onto the other, and from the commutation property of S. JV = 1"/,
Again using the commutation. any 7€ a maps (V) and -# (V) each into
itself and if ¢ € (V). ¢, € #(V) then

VTe=TVe, V 'Te, =TV 'c,.

The defect spaces of S are the orthogonal complements

SH=wV)y . ()= AV) .

From (Je.Jb)= (b.c) applied with c€ 2/ (})) or . #(J) and b in the
complement it follows that J maps the spaces ZZ(+). & (—) each onto the
other. By similar consideration of (¢, Th) = (T*c. b), T € .+7. it follows since
" 1s self adjoint that T maps the spaces 2/ (+), Z#(—) each into itself.

If V| is a unitary extension of V then / — V| has an inverse and

S =i+ V)V I

is a self adjoint extension of S. This formula establishes a 1-1 correspon-
dence between all self adjoint extensions S, of S and all unitary extensions
¥, of V. In order that S, have the commutation properties it is necessary
and sufficient that

JV, =V, V,T=TV, for TEw. (26)

Any h € # has a unique representation as an orthogonal sum
h=c+z. ce (V). € Z(+) (27)
If VV, is a unitary extension of V then V\h=Ve+V,z and z > V,z is a

linear isometric map of Z(+) onto /(—). Conversely, if W, is any linear
isometric map of 2/ (+) onto & (—) the formula

Vih=Ve+ W,z (28)
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defines a unitary extension V, of V. In order that V| satisfy (26) it is
necessary and sufficient that

JW, =W, W, Tz=TW,:z for TE .. z€L(+) (29)

The restrictions of the T € .« to & (4) form a C*-algebra on Z'(4) which
is commutative and contains the identity. Hence |6. Chap. 9], &/ (+) is the
orthogonal sum of a family of cyclic subspaces {%/(+, v)} with cyclic vectors
jz. 1. 1t follows that £/(—) is the orthogonal sum of the cyclic subspaces
(=) =JY (4, v) with cyclic vectors Jz,.. The collection of all finite sums

:=3T.z,. T.€ (30)

is a dense subspace of 2/ (+). If the vector z in (30) is z=0 then. from
orthogonality. Tz, =0 for each v, and since .+# is commutative, T, u =0 for
all u € Z7(+.v). In this sense the representation (30) is unique, and in terms
of it

W,2=2TJz, (31

defines an isometric linear map of a dense subspace of & (+) onto a,dense
subspace of Z(—). Let W, be the extension of W, to an isometric linear map
of Z2(+) onto & (—). Simple calculations show that W, and by continuity
also W, satisfies (29). With this W, (28) defines a unitary extension of V'
satisfying (26). and 1 is proved.

The proof of part I, by showing that the Friedrichs extension has the
commutation properties, is given in [9], except for minor changes to
accomodate the conjugation.

The next proposition can be used to obtain numerous interesting conse-
quences from Theorems 6, 7 in the same way that Proposition 1 was used to
obtain Theorems 2, 3, 4, 5 as corollaries of Theorem 1. The proposition
studies cylinders in E,, ,, and their forebearing sets in E,. The forebearance
is determined by the projection map r of E,,,, onto E, defined by

T((E e &y Ey o Eniag)) = (1 &3
and its inverse.
PROPOSITION 5. Let K be a compact set in E, and let L be an E, _,,
moment functional with a representing measure u (not necessairly unique)

whose support lies in the cvlinder v '(K). If f is a polvnomial on E. such
that for every polynomial p on E,

L(fpp*) 20
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then the support of u lies in the cvlinder v '(K(f)), where
K(/)={¢ceK. f() =0}

Proof. For any Borel set H in E, the formula

defines a non-negative Borel measure v on £, with support in K. If p is any
polynomial on E, then

| pdv=|  pdu=L(p).

sk BNy

so the restriction L, of L to polynomials in the first N variables is an £
moment functional with representing measure v. Since L (/pp*)>0 it
follows from Proposition 1 that the support of v lies in K( /). and hence the
support of ¢ in 77 "(K(/).

Proof of Theorem 6

With the notation of Proposition 3 let 4, ,, be a self adjoint extension of
S with the commutation properties of Proposition 4 relative to J and the C*
algebra generated by 4,....4, and [. Let E,(&) be the resolution of the
identity of for 4,, k= 1.... N + 1. Because of the commutative properties of
the 4, the formula

E(Q)=E(&)  Ev &y i) CEE, .,
defines a resolution of the identity on E, _,. The function
U(&aenns éwu) = (El(él) E.\w» 1(5‘\» ML+ Z) 1 +.2)

is increasing in each of the N + 1 variables and so determines a non-negative
measure, also denoted by 4, on £, . If p is any polynomial

Lip)=(p+ 2.1+ .2)
= (P Ay )1+ 2) (1 +.2))

so L is an E, ., moment functional with representing measure 4. From
fl4,ll <1, k=1,.., N, it follows that for k <N

Ef&)=0. & <—1
=1 &>+l
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and thus the support of u is contained in the cylinder 7~ '(C), where C is the
unit cube of E, as in (13). Then since L((1 —ry)pp*)>0, from
Proposition 5 with f =1 —r2, the support of u is contained in the spherical
cylinder (Eq. (11)),

O - r) =Z. Q.E.D.

Proof of Theorem 7

Let A,,, be a positive definite self adjoint extension of S with the
commutation properties. Then the conclusions of Theorem 6 are valid. and
from the positivity of 4, follows E, (¢, ;) =0 for &,,, <0, so in this
case the support of g is contained in the half-space where &, | > 0.
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