
JOl/RNA! OF APPROXIMATION THEORY 30, 315-333 (1980)

Solvability Criteria
for Certain N-Dimensional Moment Problems*

J. L. MCGREGOR

Department oj Mathematics, Stanford University. Stanford. California 94305

Communicated by Samuel Karlin

Received June 15. 1979

1. INTRODUCTION

Let K be a closed set in the real N-dimensional Euclidean spac(: EN' To
formulate the moment problem for K the following notation is convt:nient. A
generic point in E v is an N-tuple ¢ = (¢l ,... , ¢N) of real numbers, and a multi
index a is an N-tuple a = (a I'"'' a v) of non-negative integers. The monomial
function ¢Q is defined by

If for every multi-index a there is given a real number A(a) then the multi
indexed sequence {A(a)} is called a candidate moment sequence. In the K
moment problem it is required to find necessary and sufficient conditions,
expressed in terms of the numbers A(a), in order that the candidate moment
sequence jA(a)} have a representation

A(a) = I ¢Q dlJ,
'K

(1)

where IJ is a non-negative Borel measure with support contained in K. If
there is such a measure IJ then IA(a) f is called a K-moment sequence and IJ is
called a solution oj the K-moment problem.

For N = I the moment problem has been studied intensively and an
elaborate theory has been developed. For an account of the methods and
results of this theory, and its history see [1, 4, 71. For N > 1 the known
theory of the moment problem is comparatively meager. Hildebrandt and
Schoenberg 131 have necessary and sufficient conditions for solvability in the
case when K is an N-dimensional cube, and Stancu 181 for the case of an N-
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dimensional simplex. Results for other specific sets K in E,. N > I, appear
to be unknown. However, for N) I there are some general results known
concerning the uniqueness of the solution of the moment problem, and for
K = E, sufficient criteria for solvability are known provided the moments
satisfy a growth condition which guarantees uniqueness of the solution [21.

The objective here is to provide necessary and sufficient criteria for
solvability of the moment problem for the cases in which K is one of the
following: a (solid) sphere or its boundary: a polysphere (e.g., polydisc) or
its distinguished boundary: a torus; a cylinder or certain parts thereof.

2. NOTATION

Real or complex valued functions defined on E v will be denoted by lower
case Latin letters. If f is a function its value at a point ~ = (~I •...• ~,,) in E,
will be denoted by f(~) or f(~1 •... , ~N)' The adjoint function f* is defined by

f*(~) = f(~),

where the bar signifies complex conjugation. A function f is real if and only
if f = f*. The coordinate functions Xi' j = I, ... , N, are defined by

They are real and for any function f

I = f(x 1 ..... xv),

where the right side is interpreted as a composite function. The radial
function r is defined by

r = (x~ + ... + x~Y'.

If a = (a I"'" u v) is a multi-index, its order is ia I = a I + ... + U v and the
corresponding monomial

is of degree ial. If a=(al ..... u,) and !J=(/J1 .... ,!J,,) then

a + fJ = (a I + 131 ,... , a" + 13,,)'
The set of all polynomials in the N variables ~i with complex coefficients

will be denoted by .Y. With the usual rules for algebraic operations r is a
commutative complex algebra with involution p ---+ p*. and the constant
function I is an identity element for. ;".
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3. MOMENT FUNCTIONALS
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Corresponding to any multi-sequence p.(a)f of real or complex numbers
there is a linear function L defined on ? as follows. If

p = \ ';rr(a)x"

"
is the representation of a polynomial p as a finite linear combination of
monomials then

L(p) = \ ' ;rr(a) A(a).

"
Conversely, if L is a given linear functional on ,?, it is obtained in this way
from the multi-sequence {A(a)}, where

A(a) = L(x").

The linear functional L on ,? is called a K-moment functional if it has a
representation

L(p)= I pdfl,
'/\

(2)

where fl is a non-negative Borel measure in K. Evidently L is a K-moment
functional if and only if the corresponding multi-sequence ~A(a)f is a K
moment sequence.

Solvability criteria for the K-moment problem can often be most
conveniently summarized as conditions to be satisfied by the linear
functional L. Such conditions are regarded as effective solvability criteria if
they are readily converted into equivalent conditions on the multi-sequence
{A(a n. For example, the condition

(i) L(pp*)? 0 for every p E i',

is obviously a necessary condition for the existence of a representation (2).
The equivalent condition on the sequence {A(a)} is obtained as follows. If

p = \ ' ;rr(a) x"

is a polynomial, then

pp* = \ ' ~ ;rr(a) rr-(p) x" +B

" IJ
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L( pp*) =~ ~ n(a) n(j3) A(a + (3).
" 8

(3)

The right member of (3) is a Hermitian form in the variables n(a). and
condition (i) is the assertion that this form be positive semi-definite. This will
be the case if and only if every principal minor of the matrix of the
Hermitian form is non-negative. Thus condition (i) is equivalent to the con
dition

(i) for every finite sequence alii. a
I21

..... a(ml of distinct multi-indices
det A(aul + a(k)) ;;, O.

Condition (i) or equivalently (i) is the classical necessary and sufficient
condition for solvability of the moment problem in K = E I'

A set B in E v is called an algebraic set if there is a non-zero polynomial q
which vanishes everywhere on B. In E I the algebraic sets are the finite sets.
in E 2 they are the algebraic curves or subsets thereof.

Every Es-moment functional L satisfies condition (i). and this condition is
part of the criteria in some of the theorems below. In order that the
representing measure 11 of L be not supported by any algebraic set it is clear
from (2) that it is necessary and sufficient that (i) be satisfied with strict
inequality for every non-zero p E i'.

4. STATEMENT OF MAIN RESULTS

Let S be the unit sphere and L the surface:

S = ~~; r2(~) ( If.

L= i~;r2(~)= II.

(4 )

(5 )

THEOREM I. In order that a linear functional L on ./ be an S-moment
functional it is necessary and sufficient that L satisfy the conditions (i)
L(pp*);;' 0 for every p Ei'. and (ii) L((I -- r2

) pp*);;' 0 for every p E i'.

Criteria for solvability of the L-moment problem can be deduced from
Theorem I in various forms. When N = 2, L is a circle and the
corresponding moment problem has been intensively studied as the
trigonometric moment problem. It therefore seems most natural to formulate
the L-moment problem as a harmonic moment problem.

A not necessarily homogeneous polynomial h inr is called a harmonic
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polynomial if it satisfies the Laplace equation in E,," It is well known that
for every polynomial p there is a unique harmonic polynomial h such that

qE-Y.

The values of p and h on the boundary E of S are the same, and h is the
unique solution of the Laplace equation in S with these boundary values.

A complex valued function h defined on E is called a spherical harmonic
if there is a harmonic polynomial h in ,1' such that h = h on .E. Under
algebraic operations defined pointwise on E, the collection of all spherical
harmonics forms a complex commutative algebra ,£ with an involution
h ---> h* and an identity, the constant function I. The product of two elements
hi' h2 ofR" will be denoted by hI (8) h2 • To see that this pointwise product is
indeed a spherical harmonic, reason as follows. Let h I and h2 be the
extensions of hI and h2 to harmonic polynomials and form the polynomial
k = hI h2 • Then k agrees with hi (8) h2 on E, and there is a unique harmonic
polynomial h 3 such that k = h 3 + (I - r2 )q, q E ,9'. The polynomial h 3 is a
harmonic extension of hI ® h2 , which latter is therefore a spherical har
monic.

Another equivalent view of the algebra ,R" of spherical harmonics is the
following. The harmonic polynomials form a complete system of Irepresen
tatives for the cosets in ,1' of the principal ideal generated by I - r2

, and so
the space of harmonic polynomials is naturally endowed with the algebraic
operations of the quotient algebra,?/ (1 ~ r2

). This algebra is isomorphic to
the algebra ,£, the isomorphism mediated by restriction of functions to E.

A subset B of E is called harmonically algebraic if there is a non-zero
spherical harmonic which vanishes at every point of B. A linear functional
M on the algebra ,R" of spherical harmonics is called a harmonic moment
functional if there is a non-negative Borel measure 11 on E such that

M(h)= I hdll
"'1.'

for every h E ,~. (6 )

THEOREM 2. In order that a linear functional M on ,R" be a harmonic
moment functional it is necessary and sufficient that

(iii) M(h0h*»O for every h E ,R",

and in order that in addition the representing measure /.i be not supported by
any harmonically algebraic set, it is necessary and sufficient that strict
inequality hold in (iii) for every non-zero hE~.

Theorem 2 is trivial for N = I, and for N = 2 coincides with the well
known solvability criteria for the trigonometric moment problem.



320 J. L. Me GREGOR

Conventionally, a polydisc is a direct profuct of finitely many discs. For
example, the subset of E 4 defined by

is a bi-disc. The subset of E 2.\ defined by

is a bi-sphere. For N = 1 the bi-sphere is a square, for N = 2 it is a bi-disc.
The two following theorems are stated for the bi-sphere, but both the
methods of proof and the statements extend in an utterly straightforward way
to direct product of finitely many spheres not necessarily all of the same
dimension.

The first N coordinate functions for E 2.\ will be denoted by xi' j = 1,... , N,
and the last N by Yi' j = I, ... , N. Thus

Xj(¢) = ¢i' j= 1, ... ,N.

The two partial radial functions sand { are defined by

s = (xi + .,. + x~) 12. {=c)'i+ .. ·+y~Y2

so that S2 + {2 = r2
• The general monomial is of the form x"Y". where

a = (a I ..... (ty) and fJ = (fJ 1 .... , fJ.\) are multi-indices for Ey . The algebra of all
polynomials in the 2N variables will be denoted by .~2.

The Bergman-Silov boundary, or distinguished boundary, of S2 is the set

(8)

Any monomial x"Y" is equal on 1.'2 to a product

x"yiJ = h(x 1 ..... xv) k(Y I , .... yvl,

where hand k are harmonic polynomials. A function J defined on 1.'2 is
called a double spherical harmonic if it is equal on };2 to a sum of products
of harmonic polynomials in Xl'"'' x.\ and harmonic polynomials in Y I'.... Yy.
Every p E .7'2 is equal on };2 to a unique double spherical harmonic. Under
pointwise algebraic operations the set of all double spherical harmonics
forms a commutative algebra ,2 with an involution and an identity element.
The product of two elements], g of ,2 will be written J® g.

A linear functional M on .,2 is called a double harmonic moment
functional if there is a non-negative Borel measure f.1 on I:' such that

L(J) = I Idf.1
. I ~

for every J E ,2.
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A subset B of };2 is called a double harmonical(v algebraic set if there is a
non-zero double harmonic polynomial which vanishes everywhere on B.

THEOREM 3. In order that a linear functional L 011 .1,,2 be an S2momellt
functional it is necessary and sufficient that

and

(i)

(iv)

L(pp*) ~ 0

L((I ~S2)pp*)~0

L((1-t2)pp*)~0

THEOREM 4. In order that a linear functional M on the algebra /(2 be a
double harmonic moment functional, it is necessary and sufficient that

(v) M(j®J*) ~ 0 for every j E . /(2,

and in order that in addition the representing measure 11 be not supported by
any double harmonical~v algebraic set, it is necessary and sufficient that
strict inequality hold in (v)for every non-zero jE /(2.

When N = I, Theorem 3 is a version of a theorem of Hildebrandt and
Schoenberg quoted in the following section, and Theorem 4 is trivial. When
N = 2. Theorem 4 is concerned with double trigonometric polynomials

f= '\-
k -- n

rn

'\ - b(k, m) eiklieil".
/ -m

If, in E J' the disc with center (I ~ r. O. 0) and radius r, where 0 < r::;;; 1/2.
be rotated about the x J-axis, the domain swept out is a (solid) torus T
defined in terms of the polynomial

(9 )

by the inequality

(10)

When r = ~ the surface of T has a singularity which is harmless here.

THEOREM 5. In order that a linear functional L on .9'. (N = 3), be a T
moment functional it is necessesary and sufficient that

(i) L(pp*) ~ 0 for every p E .'9'.
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(vi) LUr pp*» 0 for every p E f".

In En I' with the partial radius

a spherical cylinder Z is defined by

and its positive half Z + by

Z+ = j~;~EZ.O~(\+, < 001.

(II)

( 12)

In this context. f" is the algebra of all polynomials in the N + 1 variables.

THEOREM 6. In order that a linear functional L on .f" be a Z-moment
functional it is necessary and sufficient that

and

(i)

(vii)

L(pp*) 0

L((1- r.~) pp*» 0

for every p E f".

for every p Ef".

THEOREM 7. In order that a linear functional L on j be a Z' -moment
functional it is necessary and sufficient that (i) and (vii) of Theorem 6 hold
and

(viii) L(x'V+ I pp*» 0 for every p E .Y.

5. THEOREM OF HILDEBRANDT AND SCHOENBERG

In 131, Hildebrandt and Schoenberg gave a solvability criterion for the
moment problem in a cube. They stated their result for the unit cube in the
positive orthant. By a translation of axes and change of scale an equivalent
result is obtained for the cube

c= {~;-I ~~j~ l,j= 1,...,Nf.

If a and fJ are multi-indices then (I - x)a (1 + xl is a hort notation for

(13)
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Their result is the following.
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THEOREM A. In order that a linear functional L on ,,? be a C-moment
functional it is necessary and sufficient that for every pair of multi-indices Ct,

(J

(15 )

The following theorem 17, p. III can be obtained as an easy deduction
from the Weierstrass polynomial approximation theorem.

THEOREM B. If an E,,-moment problem has a solution with compact
support, then it has only one solution.

6. PROOFS

PROPOSITION 1. If L is an EN-moment functional with a representing
measure fJ with compact support K, and f is a polynomial such that
L(fpp*) :) 0 for every p E ,9', then K is contained in the closed set

Proof Let B be a compact subset of the complement of F. By the
Weierstrass polynomial approximation theorem there is a real polynomial p
such that p > 1 on B and Ip I~ 1on K n F. For any integer n :) 0

o~ L(fp2n) = r fp2n dfJ + r fp2n dfJ·
"KrV' "F,-r

The first integral -40 as n -4 00, the second has a non-positive integrand and

I fp 2n dfJ ~ r fdfJ
~E,-F ~H

which is <0 if fJ(B) '* O. This would be a contradiction so fJ(B) = 0 and
Kc;:F.

Proof of Theorem 1

The identities

I-Xl =1[(l-XI)2 +x; + ,.. +x.~J + (1- r2) '1, (16)

l+xI=11(l+xI)2+x;+· .. +x~I+(I-r2H (17)
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show that I - x I and I + x I belong to the set Q of all polynomials q
representable in the form

where a and b are finite sums of squares of real polynomials. Similar iden
tities obtained by perm uting the xj in (16) and (17) show that each of the
linear functions I ± Xi is in Q. If

q I = a 1 + (I ~ r2
) b1

are in Q then

qq I = Iaa I + (I - r2
)2 bb I I + (I - r2

) lab 1 + a I b I

is also in Q. Hence for any multi-indices a. fJ the product (I - x)" (I + x)"

(see (15») is also in Q.
Now suppose L satisfies conditions (i) and (ii). Then if a and b are finite

sums of square of real polynomials.

L(a)) 0

L((I - r2 )b») 0

by (i).

by (ii)

so L(q))O for every qEQ. Hence. since (l-x)"(l+x)ilis in Q. L

satisfies condition (15) of Theorem A. It follows that L is a C-moment
functional.

Now choose any unit vector I'll) = (1'\11 ..... V~l) in E,. The linear function

defines a supporting half-space

for the unit sphere S. and all supporting half spaces are of this form. Choose
additional unit vectors 1'(2) ..... ve") which together with 1'(1) form an

orthonormal basis in E". The identity

1- (1'11 1• ¢) = ilil - (ViiI, ¢)2 + (1'(2). ¢)2 + ... + (1'1\), ¢)f 21+ (I - r2
). i

(18 )

shows that l_(v lll.¢)=!(() is in Q, hence by (i) and (ii)

L(Jpp*)) 0 for every p in ,:/'.
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It then follows from Proposition I that the support of the representing
measure fJ of the C-moment functional L is contained in the half space
H(v(l»). Each unit vector v defines a half space H(v) which contains the
support of ,u. The intersection of all such half spaces is the unit sphere S so
L is an S-moment functional and the proof is complete.

An alternative method for proving Theorem I is the operator theoretic
method used in the proof of Theorem 6 below. with substantial
simplifications because only bounded operators occur in the proof of
Theorem I. Alternatively Theorem 8.5 of 161 can be used.

Proof of Theorem 2

First. observe that the mapping T which sends a polynomial p into its
restriction to E, denoted by p. is an algebraic homomorphism of ,j' onto, /(.
For each p E ,'f' there is a unique harmonic polynomial h which is equal to p
on l-'. Hence p= h which is indeed a spherical harmonic. and clearly every
spherical harmonic is in the range of T. Hence T maps,? ontof. The map
is an algebraic homomorphism, that is T is linear, multiplicative T(pq) =
(Tp) @ Tq, and respects the involution T(p*) = (Tp)*.

Now given a linear functional M on /( which satisfies (iii). there is a
linear functional L defined on ,? by

L(p) = M(Tp).

For any p E?

L(pp*) = M(T(pp*)) = M(T(p) @ (Tp)*)

so L( pp*) ;.? 0 by (iii), i.e., L satisfies (i). Also for any p E? since
T( I - r2

) = O.

L((I - r2
) pp*) = M(T(I - r2

) T(pp*)) = O.

Hence L satisfies (ii) and also the reversed inequality

(ii )' L((1 - r2
) pp*) ~ 0 for every p E?

Because L satisfies (i) and (ii), L is an S-moment functional by Theorem 1.
Because of (ii)' the support of the representing measure fJ is, by
Proposition 1, contained in the set where I - r2 ~ O. The intersection of this
set with S is E, so the representing measure fJ is supported on E.

The range of T is ,f so for each hE"/( there is apE ,'f' such that
Tp = h, and for any such P. p = h on E. Thus

M(h)=M(Tp)=L(p)= r pdfJ= r hdfJ.
'1 "1

640: 30/4 (,
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Thus M is a .E-moment functional. The additional clause In Theorem 2
concerning strict inequality in (iii) is evident.

Proof of Theorem 3

Let L satisfy conditions (i) and (iv) of Theorem 4. When both sides of the
identity

are multiplied by pp*, P E f", it is found from (iv) that L satisfies

(19)

for every p E .Y. (20)

By considering the effect on the conditions of Theorem I of a change of scale
in E", it can be se~ from (i) and (19) that L is an S(12)-moment
functional where S(12) is the sphere with center at the origin and radius
V2. Since L also satisfies condition (iv), it follows from Proposition I that
the representing measure 11 for L has its support contained in the bi-sphere
S2. so L is an S2-moment functional.

Proof of Theorem 4

Theorem 4 can be deduced from Theorem 3 in a way very similar to the
way in which Theorem 2 was deduced from Theorem I. The details are
omitted.

Proof of Theorem 5

Let L satisfy conditions (i) and (vi). From the identity

it follows that for every polynomial p

4r(l-r)L«I-r2)pp*)

=L«I-r2)2pp*)+4(I-r)2L(x~pp*)+L(fTPp*)·

The first two terms on the right side are ~O by (i), the third is ~O by (vi),
and since 0 < 4r(l - r) because 0 < r ~ L it follows that L satisfies
condition (ii) of Theorem 1, so L is an S-moment functional. Then because
of (vi), Proposition I ensures that the representing measure 11 has support
contained in S n T = T. Thus L is a T-moment functional.

Theorems 2. 3, 4, 5 have been obtained as simple deductions from
Theorem I. Many additional results of a similar nature can be obtained by
similar arguments, for example, solvability criteria for hemispheres, spherical

sectors, etc .. and by changes of scale and other affine transformations in E".
for ellipsoids and parts thereof.
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The objective now is to prepare for the proof of Theorems 6 and 7. For the
remainder of the discussion it is assumed that ,,? is the algebra of all
polynomials on EN + l' and that L satisfies (i).

PROPOSITION 2. Let L be a linear functional on ,cr which satisfies (i)
L(pp*) ~ ofor all p E ,'? Then L(pq*) is a semi-definite Hermitian form on
Y. i.e., L(pq*) is linear in p, L(pp*) ~ 0 and

L(qp*) = L(pq*).

Proof The last equality is obtained as follows. When p and q are
interchanged in the polarization identity

4L(pq*) = L((p + q)(p + q)*) - L((p - q)(p - q)*)

+ i1L((p + iq)(p + iq)*) - L((p - iq)(p - iq)*) I

the real part on the right is unchanged, the imaginary part changes sign.
The following deductions from the fact that L(pq*) is a semi-definite

Hermitian form are well known (see 16, Chap. 8]). The form satisfies the
Schwarz inequality

IL(pq*)1 ~ L l/2(pp*) L l/2(qq*)

and from this it is seen that the set

it = jq; L(qq*) = Of

= jq; L(pq*) = 0 for all p E ,'?}

is a self adjoint ideal in ,9. The quotient algebra ,,?/.2 is a complex algebra
with an identity element 1 +.2 and an involution p + .2 --> p* + 3. The
formula

(PI +.2, P2 + .2) = L(PI pi)

defines an inner product in ,,?/.2 with corresponding norm

lip + .211 = e/2(pp*). (21 )

The completion of'?/2 relative to this norm is a Hilbert space jf'

containing ,1"/.2 as a dense subspace. Elements of ,Jr will be denoted by
a, b, C,oo. sometimes with subscripts.

The involution of ,1"/.2 is a conjugate-linear map of '?/2 onto itself,
isometric in the norm of ,Jr, so has a unique continuous extension to a
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continuous map J of. Jr onto. r. The extended map J is a conjugation of Jr.
that is. J is conjugate linear. J2 = I. and for all a. b in .Jr'

(Ja.Jb) = (h. a).

For I ~ 11. ~ N + I. multiplicationn by x k + .:! in the algebra -f'/2 can be
viewed as a linear map X k ofr with domain?j.:.!. Te operators X k are
commuting symmetric operators which map their common dense domain
into itself, and they commute with the conjugation J.

l~k~N+I.

PROPOSITION 3. If L satisfies conditions (i) and (vii) then the operators
X k • 11.= 1.. ... N. have unique extensions to bounded self adjoint operators A k

which commute with each other. Ivith J. and satisfy

\
\' ,_ (Aka. a) ~ (a. a)

k I

for all a E Jr. (22)

Let .c/ denote the C*-algebra generated by the identity and A) .... , A y , and let
S denote the closure of X y + I' Then is commutative. and every T in .c/
satisfies JT= 7"'*J. Moreover SJ=JS and every Tin.w commutes with S.
that is. ST2 TS.

Proof For any p E .f' the identity

\ ~

\' IIXk(p+.2)II 2 = \' L(xipp*)=L(r~pp*) (23)
k-I k-l

and the inequality resulting from (vii)

L(r1 pp*) ~ L(pp*) = II p + .111 2 (24 )

show that each X k , k = I..... N, is bounded, so has a unique extension to an
everywhere defined bounded operator A k • That the A k are self adjoint and
commute with each other and with J follows by continuity from the
symmetry and the corresponding commuting properties of the X k • The
inequality (22) follows by continuity from (23) and (24).

If f is a polynomial in N variables with complex coefficients, there is a
corresponding operator polynomial f(A I ..... A tv) which will be denoted by
f(A). Every element of.c/ is the limit in the uniform operator topology. of a
sequence of operator polynomials.

Let T E .w and j~(A) be operator polynomials such that fm(A) -> T. Then
for any p E.r

fm(A)(p +.2') -> T(p + .2').
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and
X H Jm(A)(p + 2) = x\j Jm(x] ,... , xx) p + J

= fm(A) Xx j 1 P + .:I

=fm(A) S(p +.:1)

--> TS(p + .:I).

which shows that T(p +.2') E :7(S) and

ST(p + j) = TS(p + 2').

Now suppose a E Q(S). Then there is a sequence Pn E.7 such that

329

Pn + .:! --> a. S(Pn + -I) --> Sa.

Since T is bounded and T(Pn +.2') E0'(S). T(Pn + ..I) --> Ta and

ST( Pn + j) = TS( Pn + 2') --> TSa.

Hence Ta E U (S) and STa = TSa. thus ST 2 TS.
With the same sequence Pn •

p~ +.:1 =J(p" +.:1) -->Ja.

SJ(Pn +.2') = xv~ 1 p~ + .:! = JS(p" + j) --> JSa

so Ja E "/(S) and SJa = JSa. Since J2 = I it is clear that SJ = JS. Q.E.D.

PROPOSITION 4. Let. Jr be a Hilbert space with a conjugation J and let
c/ be a C* algebra acting on Jr, containing the identity and such that
JT= T*J for TEeof'. A densely defined symmetric operator S will be said to
have the commutation properties if

JS= SJ and ST2 TS for TE.eof'. (25)

I. Any dense~v defined closed symmetric operator S with the
commutation properties has a self adjoint extension with the commutation
properties.

II. If also S is positive, i.e., (Sa, a) J: 0 for a E £I(S) then S has a
positive definite self adjoint extension with the commutation properties.

Remark. Phillips [9. footnote p. 382 j has given an example of a densely
defined symmetric operator with equal deficiency indices commuting
elementwise with a one parameter unitary group but lacking any self adjoint
extension so commuting. This example has no counterpart of the conjugation
J.
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Proof The proof uses the theory of Cayley transforms and the
Friedrichs extension, both found in [5, Chap. 81. If 5 is self adjoint the two
conclusions are true. Assume 5 is not self adjoint.

The Cayley transform V of 5 is the closed linear isometric operator
V = (5-- 1)( 5 + i) \ with domain and range the closed proper subspaces

/(V)=.#(5+ i). h'( V) = #(5- i).

Since J maps '/ (5) unto itself it is easily seen that J maps '/ (V) and # (V)

each onto the other, and from the commutation property of 5, JV = V \J.
Again using the commutation. any I'E a maps 0'(V) andl!(V) each into
itself and if e E C/( V). e\ E #(V) then

~Te = I'Ve.

The defect spaces of 5 are the orthogonal complements

:/(t-)='/(V) . '/(--) =%(V) .

From (Je.Jb) = (b.e) applied with eE::/(V) or #(V) and h In the
complement it follows that J maps the spaces :Y (+), Sf (-) each onto the
other. By similar consideration of (c. Tb) = (T*e. b). I' E :y'. it follows since
y'- is self adjoint that T maps the spaces :/'(+), Y(-) each into itself.

If V\ is a unitary extension of V then I - V\ has an inverse and

is a self adjoint extension of 5. This formula establishes a 1-1 correspon
dence between all self adjoint extensions 5 \ of 5 and all unitary extensions
V\ of V. In order that 5\ have the commutation properties it is necessary
and sufficient that

for TE.w. (26)

Any h E ;f has a unique representation as an orthogonal sum

h = e + z. e E :/'(V). z E U(+). (27)

If V\ is a unitary extension of V then V\ h = Ve + V\ z and z --> V\ Z is a
linear isometric map of 0' (+) onto U (-). Conversely. if W\ is any linear
isometric map of Y(+) onto 0"(-) the formula

(28)
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defines a unitary extension VI of V. In order that VI satisfy (26) it is
necessary and sufficient that

for TE.~;7, zE::::I(+). (29)

The restrictions of the T E .y;7 to ::::I (+) form a C*-algebra on U( +) which
is commutative and contains the identity. Hence [6, Chap. 91, ~./ (+) is the
orthogonal sum of a family of cyclic subspaces 10'(+, v)l with cyclic vectors
iz,.I. It follows that U (-) is the orthogonal sum of the cyclic subspaces
,:/(-,1') =10'(+, v) with cyclic vectors 1z,.. The collection of all finite sums

Z = l:T,.z,., T,. E ,0)' (30)

is a dense subspace of 0' (+). If the vector z in (30) is z = 0 then, from
orthogonality, T,.z,. = 0 for each v, and since .vI' is commutative, T" u = 0 for
all u E ::::1(+, v), In this sense the representation (30) is unique, and in terms
of it

(31 )

defines an isometric linear map of a dense subspace of U (+) onto a. dense
subspace of U(-), Let WI be the extension of Wo to an isometric linear map
of ::::I (+) onto q (-). Simple calculations show that Wo' and by continuity
also WI' satisfies (29). With this WI' (28) defines a unitary extension of V
satisfying (26), and I is proved,

The proof of part II, by showing that the Friedrichs extension has the
commutation properties, is given in 19], except for minor changes to
accomodate the conjugation.

The next proposition can be used to obtain numerous interesting conse
quences from Theorems 6, 7 in the same way that Proposition I was used to
obtain Theorems 2, 3, 4, 5 as corollaries of Theorem 1. The proposition
studies cylinders in EN + M and their forebearing sets in E" The forebearance
is determined by the projection map r of E, + If onto EN defined by

and its inverse.

PROPOSITION 5, Let K be a compact set in E, and let L be an E\ HI

moment functional with a representing measure Ii (not necessairly unique)
whose support lies in the cylinder r- I(K). If f is a polynomial on EN such
that for every polynomial p on EN

L (fpp*) ;;? 0
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then the support oj j.1lies in the cylinder r l(K(J)), where

K(f) = ~~: ~ E K. I( ~) ~ 0 f·

Proof For any Borel set H in E, the formula

v(H) = j.1(r l(H))

defines a non-negative Borel measure v on E, with support in K. If P is any
polynomial on E, then

p dv = I' p dj.1 = L ( p).
"/:\ . F\ ,\I

so the restriction L, of L to polynomials in the first N variables is an E,
moment functional with representing measure v. Since L,(Jpp*) ~ 0 it
follows from Proposition 1 that the support of v lies in K(J). and hence the
support of.u in r l(K(J).

ProoJ oj Theorem 6

With the notation of Proposition 3 let A, + 1 be a self adjoint extension of
S with the commutation properties of Proposition 4 relative to J and the C*
algebra generated by A I , , A, and 1. Let Ek(~) be the resolution of the
identity of for A k' k = I, , N + I. Because of the commutative properties of
the A k the formula

defines a resolution of the identity on E" I' The function

is increasing in each of the N + I variables and so determines a non-negative
measure, also denoted by j.1, on E" + l' If p is any polynomial

L(p) = (p +.:/. 1+2')

= (p(A 1 , .... A H 1 )(1 + -I), (1 + .:/))

= I pdj.1.
. F\.I

so L is an E, I moment functional with representing measure j.1. From
II,Akll ~ I, k= I, .... N, it follows that for k~N

Ek(t,d = O.

= I,
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and thus the support of f.1 is contained in the cylinder y-I(C), where C is the
unit cube of EN as in (13). Then since L( (1 - r,~) pp*) ) 0, from
Proposition 5 with f = I - r~, the support of f.1 is contained in the spherical
cylinder (Eq. (II)),

Q.E.D.

Proof of Theorem 7

Let AN + 1 be a positive definite self adjoint extension of S with the
commutation properties. Then the conclusions of Theorem 6 are valid. and
from the positivity of Av+ I follows Ev+ J~N+ 1) = °for (\+ I < 0, so in this
case the support of f.1 is contained in the half-space where ~.\+ I ) 0.
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